Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.01.12.476031

RESUMEN

The newly emerging SARS-CoV-2 Omicron (B.1.1.529) variant first identified in South Africa in November 2021 is characterized by an unusual number of amino acid mutations in its spike that renders existing vaccines and therapeutic monoclonal antibodies dramatically less effective. The in vivo pathogenicity, transmissibility, and fitness of this new Variant of Concerns are unknown. We investigated these virological attributes of the Omicron variant in comparison with those of the currently dominant Delta (B.1.617.2) variant in the golden Syrian hamster COVID-19 model. Omicron-infected hamsters developed significantly less body weight losses, clinical scores, respiratory tract viral burdens, cytokine/chemokine dysregulation, and tissue damages than Delta-infected hamsters. The Omicron and Delta variant were both highly transmissible (100% vs 100%) via contact transmission. Importantly, the Omicron variant consistently demonstrated about 10-20% higher transmissibility than the already-highly transmissible Delta variant in repeated non-contact transmission studies (overall: 30/36 vs 24/36, 83.3% vs 66.7%). The Delta variant displayed higher fitness advantage than the Omicron variant without selection pressure in both in vitro and in vivo competition models. However, this scenario drastically changed once immune selection pressure with neutralizing antibodies active against the Delta variant but poorly active against the Omicron variant were introduced, with the Omicron variant significantly outcompeting the Delta variant. Taken together, our findings demonstrated that while the Omicron variant is less pathogenic than the Delta variant, it is highly transmissible and can outcompete the Delta variant under immune selection pressure. Next-generation vaccines and antivirals effective against this new VOC are urgently needed.


Asunto(s)
Trastornos Cronobiológicos , COVID-19 , Convulsiones
2.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.10.13.464307

RESUMEN

The repeated emergence of highly pathogenic human coronaviruses as well as their evolving variants highlight the need to develop potent and broad-spectrum antiviral therapeutics and vaccines. By screening monoclonal antibodies (mAbs) isolated from COVID-19-convalescent patients, we found one mAb, 2-36, with cross-neutralizing activity against SARS-CoV. We solved the cryo-EM structure of 2-36 in complex with SARS-CoV-2 or SARS-CoV spike, revealing a highly conserved epitope in the receptor-binding domain (RBD). Antibody 2-36 neutralized not only all current circulating SARS-CoV-2 variants and SARS-COV, but also a panel of bat and pangolin sarbecoviruses that can use human angiotensin-converting enzyme 2 (ACE2) as a receptor. We selected 2-36-escape viruses in vitro and confirmed that K378T in SARS-CoV-2 RBD led to viral resistance. Taken together, 2-36 represents a strategic reserve drug candidate for the prevention and treatment of possible diseases caused by pre-emergent SARS-related coronaviruses. Its epitope defines a promising target for the development of a pan-sarbecovirus vaccine.


Asunto(s)
COVID-19 , Síndrome Respiratorio Agudo Grave
3.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.10.08.463665

RESUMEN

Extrapulmonary complications of different organ systems have been increasingly recognized in patients with severe or chronic Coronavirus Disease 2019 (COVID-19). However, limited information on the skeletal complications of COVID-19 is known, even though inflammatory diseases of the respiratory tract have been known to perturb bone metabolism and cause pathological bone loss. In this study, we characterized the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on bone metabolism in an established golden Syrian hamster model for COVID-19. SARS-CoV-2 causes significant multifocal loss of bone trabeculae in the long bones and lumbar vertebrae of all infected hamsters. The bone loss progressively worsens from the acute phase to the post-recovery phase. Mechanistically, the bone loss was associated with SARS-CoV-2-induced cytokine dysregulation which upregulates osteoclastic differentiation of monocyte-macrophage lineage. The pro-inflammatory cytokines further trigger a second wave of cytokine storm in the skeletal tissues to augment their pro-osteoclastogenesis effect. Our findings in this established hamster model suggest that pathological bone loss may be a neglected complication which warrants more extensive investigations during the long-term follow-up of COVID-19 patients. The benefits of potential prophylactic and therapeutic interventions against pathological bone loss should be further evaluated. O_FIG O_LINKSMALLFIG WIDTH=188 HEIGHT=200 SRC="FIGDIR/small/463665v1_ufig1.gif" ALT="Figure 1"> View larger version (81K): org.highwire.dtl.DTLVardef@c5b1d6org.highwire.dtl.DTLVardef@11e8728org.highwire.dtl.DTLVardef@13b8902org.highwire.dtl.DTLVardef@1a00cfe_HPS_FORMAT_FIGEXP M_FIG C_FIG Graphical abstractSARS-CoV-2 infection causes pathological bone loss in golden Syrian hamsters through induction of cytokine storm and inflammation-induced osteoclastogenesis.


Asunto(s)
Infecciones por Coronavirus , Infecciones , Enfermedades Óseas Metabólicas , Enfermedades Óseas , Trastornos Cronobiológicos , COVID-19 , Inflamación
4.
researchsquare; 2020.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-25828.v1

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a threat to global public health. Prompt patient identification and quarantine is the most effective way to control its rapid transmission, which can be facilitated by early detection of viral antigens. Here we present a platform to develop and optimize the fibronectin-based affinity-enhanced antibody mimetics (monobodies) for recognizing viral antigens. Specifically, we developed monobodies targeting SARS-CoV-2 nucleocapsid (N) protein. We showed that two monobodies, NN2 and NC2, bind to N protein’s N- and C-terminal domains respectively with a Kd in nM range.The specificity of the recognition was confirmed with co-immunoprecipitation and immunofluorescence assays. Furthermore, we demonstrated that one round of in vitro maturation using mRNA display can improve the binding affinity of monobodies. Machine learning algorithms were integrated with deep sequencing data for selecting candidates that improve the detection sensitivity of N. Using this pair of monobodies, we have developed an enzyme-linked immunosorbent assay (ELISA) for viral detection. We were able to detect recombinant N at 4 pg/ml and detect N in viral culture supernatant, with no cross-reactivity with other CoV. Integrating high-dense mutagenesis, mRNA display, deep sequencing and machine learning, this platform can be applied through iterations to identify and optimize monobodies against emerging viral antigens, potentiating point-of-care detection of communicable diseases in a cost-and time-sensitive manner.Authors Yushen Du, Tian-hao Zhang, Xiangzhi Meng, Yuan Shi, and Menglong Hu contributed equally to this work.


Asunto(s)
COVID-19
5.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.04.16.044016

RESUMEN

The emergence of novel SARS coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of severe pneumonia-like disease designated as coronavirus disease 2019 (COVID-19). To date, more than 2.1 million confirmed cases and 139,500 deaths have been reported worldwide, and there are currently no medical countermeasures available to prevent or treat the disease. As the development of a vaccine could require at least 12-18 months, and the typical timeline from hit finding to drug registration of an antiviral is >10 years, repositioning of known drugs can significantly accelerate the development and deployment of therapies for COVID-19. To identify therapeutics that can be repurposed as SARS-CoV-2 antivirals, we profiled a library of known drugs encompassing approximately 12,000 clinical-stage or FDA-approved small molecules. Here, we report the identification of 30 known drugs that inhibit viral replication. Of these, six were characterized for cellular dose-activity relationships, and showed effective concentrations likely to be commensurate with therapeutic doses in patients. These include the PIKfyve kinase inhibitor Apilimod, cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825, and ONO 5334, and the CCR1 antagonist MLN-3897. Since many of these molecules have advanced into the clinic, the known pharmacological and human safety profiles of these compounds will accelerate their preclinical and clinical evaluation for COVID-19 treatment.


Asunto(s)
COVID-19 , Neumonía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA